Лабораторная работа

КОМПЬЮТЕРНЫЙ АНАЛИЗ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ПОСЛЕДОВАТЕЛЬНОГО РЕЗОНАНСНОГО КОНТУРА С ИСПОЛЬЗОВАНИЕМ ПРОГРАММЫ *FASTMEAN*

1. Задание на самостоятельную подготовку

1.1. Изучите теоретические вопросы, связанные с явлением резонанса.

1.2. Рассчитайте резонансную частоту f_0 , добротность Q и ширину полосы пропускания $2\Delta f^*$, последовательного колебательного контура, схема которого приведена на рис. 6.1, по формулам

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
, Гц; $Q = \frac{2\pi f_0 L}{R}$; $2\Delta f^* = \frac{f_0}{Q}$, Гц.

Значения параметров контура приведены в табл. 6.1.

Таблица 6.1

Вариант	<i>R</i> , Ом	<i>L</i> , мΓ	C , мк Φ
1	39.8	3,17	0,5
2	25,2	2	0,79
3	50,0	4	0,396
4	33,16	2,64	0,6
5	43,95	3,5	0,453
6	56,5	4,5	0,352
7	28,4	2,264	0,7
8	66	5,28	0,3
9	36,18	2,88	0,55

1.3. Рассчитайте частоты $f_{\max L}$ и $f_{\max C}$, при которых напряжения на индуктивности U_L и емкости U_C максимальны.

$$f_{\max L} = \frac{f_0}{\sqrt{1 - \frac{1}{2Q^2}}}, \Gamma$$
ц; $f_{\max C} = f_0 \sqrt{1 - \frac{1}{2Q^2}}, \Gamma$ ц.

1.4. Рассчитайте на резонансной частоте значения амплитудно-частотных характеристик, соответствующих передаточным функциям:

$$H_R(j\omega) = \frac{\dot{U}_R}{\dot{U}_1}, \quad H_C(j\omega) = \frac{\dot{U}_C}{\dot{U}_1}, \quad H_L(j\omega) = \frac{\dot{U}_L}{\dot{U}_1}$$

Результаты расчетов занесите в графу «Предварительный расчет» табл. 6.2.

Предварительный расчет	Значение <i>R</i>	f_0	Q	$2\Delta f^*$	f _{maxL}	f _{maxC}	$ H_R(j\omega_0) $	$ H_C(j\omega_0) $	$ H_L(j\omega_0) $
	Ом	Γц		Γц	Γц	Γц	_	_	_
	R								
Результаты анализа на ПК	R								
	0,55 <i>R</i>				_	_		_	_
	0,1 <i>R</i>								

Рис. 6.1

2. Задание для работы в компьютерном классе

2.1. Войдите в ОС Windows. Двойным нажатием левой кнопки мыши загрузите программу *FASTMEAN*. Описание работы с программой приведено в приложении настоящих методических указаний.

2.2. Постройте на экране дисплея схему последовательного колебательного контура, приведенную на рис. 6.1, задайте значения параметров элементов (см. п. 1, 2 приложения).

2.3. Рассчитайте и исследуйте влияние величины сопротивления R на частотные характеристики цепи, рассматривая в качестве выходной величины напряжение на резистивном сопротивлении R:

$$|H_R(j\omega)| = \frac{U_R}{U_1}, \, \theta_R(\omega) = \arg(H_R(j\omega))$$

в диапазоне частот 100 Гц $\leq f \leq$ 10кГц (см. п. 3, 4 приложения), выбрав число расчетных точек равным 1000. Для изменения параметра *R* используйте опцию «параметр» в меню «Расчет частотных характеристик» (см. п. 5 приложения). В качестве начального значения *R* введите уменьшенное в 10 раз – 0,1 *R*, а в качестве конечного – заданное значение *R*. Установите число графиков равное трем. Перерисуйте графики с экрана ПК вместе с масштабной сеткой.

2.4. Проведите детальный анализ частотных характеристик $|H_R(j\omega)|$ и $\theta_R(\omega)$ в узком диапазоне частот, включающем полосу пропускания, выделив часть графиков вблизи резонансной частоты (см. п. 4 приложения). По полученным графикам, поочередно для каждого значения *R*, с помощью линейки определите максимальное значение амплитудно-частотной характеристики

 $|H_R(j\omega)|_{\text{max}} = |H_R(j\omega_0)|$, резонансную частоту f_0 , при которой $|H_R(j\omega)|$ максимально, и граничные частоты f_{-1} и f_1 полосы пропускания, при которых

$$|H_R(j\omega_{\rm rp})| = \frac{\left|H_R(j\omega)\right|_{\rm max}}{\sqrt{2}}$$

Рассчитайте ширину полосы пропускания контура $2\Delta f^* = f_1 - f_{-1}$.

Полученные значения $|H_R(j\omega_0)|$, f_0 и $2\Delta f^*$ занесите в графу «Результаты анализа на ПК» табл. 6.2. Найдите значения фазочастотных характеристик $\Theta_R(\omega)$ на резонансной частоте f_0 , на граничных частотах полосы пропускания f_1 и f_{-1} и запишите полученные значения в протокол. Обратите внимание, что максимальное значение АЧХ на резонансной частоте $|H_R(j\omega_0)|$ не изменяется при различных значениях резистивного сопротивления R.

2.5. Рассчитайте одновременно амплитудно-частотные характеристики цепи, используя в качестве выходных величин напряжения на индуктивности и на емкости:

$$|H_L(j\omega)| = \frac{U_L}{U_1}, \qquad |H_C(j\omega)| = \frac{U_C}{U_1}$$

в диапазоне частот $100\Gamma_{II} \le f \ge 10\kappa\Gamma_{II}$, выбрав число расчетных точек равным 1000. Перерисуйте их с экрана ПК вместе с масштабной сеткой.

2.6. Проведите детальный анализ частотных характеристик, выделив часть графиков вблизи резонансной частоты, и найдите по ним с помощью линейки частоты $f_{\max L}$ и $f_{\max C}$, при которых $|H_L(j\omega)|$ и $|H_C(j\omega)|$ принимают максимальные значения. Занесите значения $|H_L(j\omega)|_{\max}$ и $|H_C(j\omega)|_{\max}$ в протокол. Найдите резонансную частоту f_0 , на которой равны значения амплитудно-частотных характеристик $|H_L(j\omega_0)| = |H_C(j\omega_0)|$, и с помощью линейки определите эти значения. Занесите значения $f_{\max L}$ и $f_{\max C}$, $|H_L(j\omega_0)|$ и $|H_C(j\omega_0)|$ в графу «Результаты анализа на ПК» табл. 6.2.

2.7. Исследуйте влияние величины добротности контура Q на амплитудночастотные характеристики $|H_L(j\omega)|$ и $|H_C(j\omega)|$. Для этого задайте значение параметра резистивного сопротивления контура $R_1 = 0,1R$, вследствие чего добротность контура увеличится в 10 раз. Рассчитайте одновременно характеристики $|H_L(j\omega)|$ и $|H_C(j\omega)|$, используя в качестве выходных величин напряжения на индуктивности и на емкости, в диапазоне частот 100Гц $\leq f \geq 10$ кГц, выбрав число расчетных точек равным 1000. Перерисуйте графики с экрана ПК вместе с масштабной сеткой.

2.8. Проведите детальный анализ частотных характеристик, выделив часть графиков вблизи резонансной частоты. Обратите внимание, что в узком диапазоне частот, включающем полосу пропускания, обе характеристики практически совпадают и имеют общий максимум на резонансной частоте. По полученным графикам с помощью линейки найдите значения f_0 , $|H_L(j\omega_0)| = |H_C(j\omega_0)| = |H_C(j\omega_0)| = |H_L(j\omega)|_{\text{max}} = |H_C(j\omega)|_{\text{max}}$ и запишите их в графу «Результаты анализа на ПК» табл. 6.2.

3. Указания по подготовке к защите

3.1. Оформите отчет по лабораторной работе, который должен содержать:

- схемы исследуемых цепей,

- расчетные формулы и таблицу с результатами предварительного расчета и анализа на ПК,

- графики рассчитанных на ПК частотных характеристик.

3.2. Рассчитайте добротность контура $Q = \frac{f_0}{2\Delta f^*}$ для найденных по графи-

кам $|H_R(j\omega)|$ величин f_0 и 2 Δf^* при трех значениях параметра резистивного сопротивления: заданного *R*, 0,1*R* и 0,55*R*. Сделайте вывод о влиянии величины резистивного сопротивления на ширину полосы пропускания и добротность резонансного контура. Покажите на графиках $|H_R(j\omega)|$ полосы пропускания для трех значений параметра *R*.

3.3. На графиках $|H_L(j\omega)|$ и $|H_C(j\omega)|$, рассчитанных для параметра R, найдите и отметьте резонансную частоту f_0 , при которой $|H_L(j\omega_0)| = |H_C(j\omega_0)|$, частоты $f_{\max L}$ и $f_{\max C}$, а также соответствующие им значения $|H_L(j\omega)|_{\max}$ и $|H_C(j\omega)|_{\max}$.

3.4. Сравните графики амплитудно-частотных характеристик $|H_L(j\omega)|$ и $|H_C(j\omega)|$, рассчитанных при значениях резистивного сопротивления R и 0,1R. Найдите по ним добротности из условия, что $|H_L(j\omega_0)| = |H_C(j\omega_0)| = Q$, и сравните их значения с найденными по графикам $|H_R(j\omega)|$.

3.5. Сделайте выводы о степени совпадения предварительно рассчитанных величин с найденными по частотным характеристикам, рассчитанным на ПК.

Контрольные вопросы

1. Что называется резонансом?

2. Что называется резонансной частотой, характеристическим сопротивлением, полосой пропускания, добротностью контура? Как сопротивление потерь контура влияет на эти величины?

3. Почему резонанс в последовательном контуре называют резонансом напряжений? Какими будут напряжения на элементах контура при резонансе?

4. Чему равно сопротивление последовательного контура при резонансе?

5. При каких значениях добротности *Q* колебательный контур считается высокодобротным?

6. В чем отличие амплитудно-частотных характеристик $|H_C(j\omega)| = \frac{U_C}{U_1}$ и

 $|H_L(j\omega)| = \frac{U_L}{U_1}$ последовательных колебательных *RLC* контуров низкой и высо-

кой добротности?

7. Нарисуйте схемы замещения последовательного колебательного контура на частотах $\omega = 0$ и $\omega \to \infty$ и постройте примерные графики частотных зависимостей

$$\frac{U_R}{U_1}, \frac{U_C}{U_1}, \frac{U_L}{U_1}.$$

8. Почему резонанс в параллельном контуре называют резонансом токов? Чему равны токи в элементах контура при резонансе?

9. Чему равно сопротивление параллельного контура при резонансе?

10. Нарисуйте схемы замещения параллельного колебательного контура на частотах $\omega = 0$ и $\omega \to \infty$ и постройте примерные графики частотных зависимостей

$$\frac{I_R}{I_1}, \frac{I_L}{I_1}, \frac{I_C}{I_1}.$$