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Graph Evolution 

Rules help in 

analyzing the 

evolution of large 

networks and can be 

used to predict the 

future creation of 

links among nodes.

networks follow power-law degree distri-

bution,2 have a small diameter, and ex-

hibit small-world structure3 and community 

structure.4 Attempts to explain the proper-

ties of social networks have led to dynamic 

models inspired by the preferential attach-

ment model,5 which assumes that new net-

work nodes have a higher probability of 

forming links with high-degree nodes, cre-

ating a “rich-get-richer” effect.

Recently several researchers have turned 

their attention to the evolution of social net-

works at a global scale. For example, Jure 

Leskovec and his colleagues empirically ob-

served that networks become denser over 

time, in the sense that the number of edges 

grows superlinearly with the number of 

nodes.6 Moreover, this densi"cation follows 

a power-law pattern. They reported that the 

network diameter often shrinks over time, 

in contrast to the conventional wisdom that 

such distance measures should increase 

slowly as a function of the number of nodes.

Although some effort has been devoted 

to analyzing global properties of social net-

work evolution, not much has been done to 

study graph evolution at a microscopic level. 

A "rst step in this direction investigated a 

variety of network formation strategies,7 

showing that edge locality plays a critical 

role in network evolution.

We propose a different approach. Follow-

ing the paradigm of association rules and 

frequent-pattern mining, our work searches 

for typical patterns of structural changes 

in dynamic networks. Mining for such lo-

cal patterns is a computationally challeng-

ing task that can provide further insight into 

the increasing amount of evolving network 

data. Beyond the notion of graph evolution 

rules (GERs), a concept that we introduced 

in an earlier work,8 we developed the Graph 

W
ith the increasing availability of large social network data, there is 

also an increasing interest in analyzing how those networks evolve 

over time.1 Traditionally, the analysis of social networks has focused only on 

a single snapshot of a network. Researchers have already veri"ed that social 
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Evolution Rule Miner (GERM) soft-

ware to extract such rules and ap-

plied these rules to predict future net-

work evolution.9,10

The merits of our approach go be-

yond descriptive analysis. In many 

cases, frequent patterns are used as 

basic blocks to build more complex 

data-mining solutions. Our frame-

work can help predict edges among 

old and new nodes and predict when 

a new edge is expected to appear. 

Even when comparing directly with 

the classic link-prediction problem,9 

we show that simple scores based on 

our evolution rules represent impor-

tant features providing good predic-

tion performances.

Rules of Graph Evolution
We use the term G ! (V, E, l) to de-

note a graph G over a set of nodes V 

and edges E " V # V. The function 

l: V $ E ֏ % is an assignment from 

graph nodes and edges to labels from 

an alphabet %. Those labels repre-

sent properties, and for simplicity, 

we assume that they do not change 

over time. For example, in a social 

network nodes are users (with prop-

erties such as gender, country, and 

college), while edge labels might rep-

resent the type of link (such as friends 

or family).

We conceptually represent the 

graph evolution using a series of 

graphs G1, &, GT, so that Gt ! (Vt, Et) 

represents the graph at time t. Be-

cause G1, &, GT represent different 

snapshots of the same graph, we have 

Vt " V and Et " E. For simplicity, we 

assume that nodes and edges are only 

added and never deleted as the graph 

evolves—that is, V1 " V2 " & VT and 

E1 " E2 " & ET. Our mining algo-

rithm represents the data set by sim-

ply collapsing all the snapshots G1, &, 

GT in a graph G, in which edges are 

time-stamped with their "rst appear-

ance. Thus, we have G ! (V, E) with 

V V V
t

T

t T
= =

=
∪ 1

 and E E E
t

T

t T
= =

=
∪ 1 . 

We assign a time stamp t(e) ! min{j ' e ( 

Ej} to each edge e ! {u, v}. Overall, 

a time-evolving graph is described 

as G ! (V, E, t, l), with t assigning 

time stamps to the edges. (The num-

ber of edge deletions in social net-

works is small enough to be negli-

gible when analyzing the networks’ 

temporal evolution. However, in our 

framework, we also can handle dele-

tions by slightly changing the match-

ing operator.8)

Consider a time-evolving graph G. 

Intuitively, a pattern P of G is a sub-

graph of G that in addition to match-

ing edges of G also matches node and 

edge labels and edge time stamps.

Now consider the pattern shown 

in Figure 1 extracted from the Digi-

tal Bibliography and Library Project 

(DBLP) coauthorship network (http://

dblp.uni-trier.de), where nodes repre-

sent authors and edges between nodes 

represent coauthorship. Arguably, the 

essence of the pattern in Figure 1 is 

that two distinct pairs of connected 

authors—one collaboration created 

at time 0 and one at time 1—are later 

(at time 2) connected by a collabora-

tion involving one author from each 

pair, plus a third author. We want 

to account for an occurrence of that 

event even if it was taking place at 

times, say, 16, 17, and 18.

These considerations lead to the fol-

lowing de"nition: Let G ! (V, E, t, l) 

and P ! (VP, EP, tP, lP) be graphs, 

where G is the time-evolving input 

graph and P is a pattern. We assume 

that P is connected. We say that P oc-

curs in G if there exists a ) ∈R  and 

a function j : VP ֏ V mapping the 

nodes of P to the nodes in G so that 

the following conditions hold:

1. If (u, v) is an edge in EP, then 

(j(u), (j(v)) is an edge in E and 

lP(u) ! l(j(u)), lP(v) ! l(j(v)), 

and lP((u, v)) ! l((j(u), j(v))). In 

other words, an edge in the pat-

tern graph is an edge in the host 

graph and all labels are matching.

2. If (u, v) is an edge in EP, then 

t(j(u), j(v)) ! t(u, v) * ). That is, 

the time stamps on the edges are 

matched, possibly with a ) offset.

With this de"nition, we obtain equiv-

alence classes of structurally isomor-

phic patterns that differ only by a 

constant on the time stamp of their 

edges. To avoid redundancies in the 

search space, we only pick one repre-

sentative for each equivalence class; 

the one where the lowest time stamp 

is zero.

Mining Graph  
Evolution Rules
Following the association-rule-mining  

paradigm, we next have to de"ne 

concepts of support and con"dence. 

Frequent-pattern mining algorithms 

are based on the notion of support. 

The support s(P, D) of a pattern P 

in a data set D is the number of oc-

currences of P in D. In the classical 

graph-mining setting where D is a 

set of graphs (such as molecules), the 

support is easily de"ned as the num-

ber of these graphs for which P is a 

subgraph. Various algorithms dealing 

with this setting exist; gSpan is one of 

the most ef"cient.11 However, in our 

case, the de"nition of support is more 

complex because we must compute 

the support in a unique time-evolving 

input graph G.

The most important property of a 

de"nition of support is antimonoto-

nicity, which is the basis of the Apri-

ori algorithm. This property states 

Figure 1. Relative time patterns. We 

extracted these patterns from the 

Digital Bibliography and Library Project 

(DBLP) coauthorship network.
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that a pattern’s support should be at 

least as large as the support of all its 

super-patterns. The main idea is that 

whenever a pattern’s support violates 

the frequency constraint, all its super- 

patterns can be pruned because they 

will also violate the minimum frequency 

constraint. Without antimonotonic-

ity, frequent-pattern mining is essen-

tially infeasible.

For our application of mining rules 

of evolving networks, we employ the 

minimum image-based support mea-

sure,12 which is antimonotone and 

deals with the case of counting pat-

tern occurrences in a single graph, as 

opposed to other measures that count 

occurrences in multiple graphs.

To characterize network evolution 

using frequent patterns, we need to 

decompose a pattern into the par-

ticular sequence of steps and subse-

quently determine each step’s con"-

dence. Each step can be considered 

as a rule body + head, with both 

body and head being patterns. Given 

a frequent pattern head PH, the 

corresponding body PB is uniquely 

de"ned as

E e E t e t e
B H e E

H

= ∈ < ∗
∈

{ max| ∗( ) ( ( ))}

and

V v V v E
B H B

= ∈ >{ deg( , ) }| 0

where deg(v, EB) denotes the degree 

of v with respect to the edges in EB. 

Moreover, we constrain PB to be con-

nected. The support of a GER is the 

support of its head. Finally, following 

the association rules framework, we 

de"ne a rule’s con"dence as the ratio 

of the support of the rule’s head and 

body. (This de"nition yields a unique 

body for each head and therefore 

a unique con"dence value for each 

head. This lets us represent the rules 

by the head only, as in Figure 1. This  

definition disallows disconnected 

graphs as body due to the lack of a 

support de"nition for disconnected 

graphs. As a consequence, not all fre-

quent patterns can be decomposed 

into GERs.)

Figure 2 shows an example of a 

real GER extracted from the DBLP. 

The node labels represent the class of 

the node’s degree—that is, a node la-

beled with a large number is a node 

with high degree. In this example, la-

bel 3 indicates nodes with a degree 

larger than 50. Additionally, edge  

labels capture the time information 

and represent the (relative) year in 

which the "rst collaboration between 

two authors was established. Intui-

tively, the rule in Figure 2 might be 

read as a local evidence of preferential 

attach ment: a large-degree node (la-

bel 3), which at time t is connected to 

four medium-degree nodes (label 2),  

at time t * 1 will be connected to a 

"fth node. The collaboration-rich  

researcher gets richer.

We developed a tool for mining 

rules of graph evolution using the al-

gorithms we’ve just described. Our 

GERM tool is an adaptation of an 

earlier algorithm,12 which is in turn 

an adaptation of gSpan.11 (GERM’s 

executable code is freely available at 

http://www-kdd.isti.cnr.it/GERM.) 

Thus, GERM, like gSpan, is based on 

a depth-"rst search (DFS) traversal of 

the search space, which leads to low 

memory requirements. Indeed, in all 

our experiments, the memory con-

sumption was negligible.

Figure 3 shows the basic structure 

of the GERM graph miner. The most 

involved part of the algorithm is the 

support computation. The starting 

point of our implementation is the 

frequent-subgraph mining frame-

work,12 in which the gSpan support 

calculation is replaced by the mini-

mum image based support.

One of gSpan’s key elements is the 

use of the minimum DFS code, which 

is a canonical form introduced to 

avoid multiple generations of the same 

pattern. We must change this canoni-

cal form to enable GERM to mine 

patterns with relative time. As we ex-

plained previously, we only want one 

representative pattern per equivalence 

class—the one with the lowest time 

stamp being zero. We therefore mod-

ify the canonical form such that the 

"rst edge in the canonical form is al-

ways the one with the lowest time 

stamp.

Figure 2. A graph evolution rule (GER) 

extracted from the Digital Bibliography 

and Library Project (DBLP) coauthorship 

network.
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Figure 3. The basic structure of the Graph Evolution Rule Miner (GERM). G is the 

input graph, S is the set of frequent subgraphs mined by the algorithm, and 

s is the current subgraph, which is added to the solution set S if its frequency 

s(s, G) exceeds the minimum support threshold. The algorithm’s initial call is 

SubgraphMining(G, ,, e).

1: if s - min(s) then return // using our canonical form
2: S . S $ s
3: enumerate all s potential children with one edge growth as s/
4: for all enumerated s/ do

5:     // considering ) offset and our support definition
6:     if s(s/, G) minSupp then

7:        SubgraphMining(G, S, s/)
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When matching a pattern to the 

host graph, we implicitly "x a value 

of ), which represents the time gap 

between the pattern and host graph. 

To complete the match, all remaining 

edges must adhere to this value of ). 

If all the edges match with the ) set 

when matching the "rst edge, the pat-

tern matches the host graph with that 

value of ).

GERM’s computational complex-

ity is similar to that of gSpan in the 

multiple input graphs setting, since 

one of the factors is the total number 

of nodes in both cases. However, the 

maximum node degree d is a second 

factor because it increases the possi-

ble combinations that have to be eval-

uated for each subgraph-isomorphism  

test. In detail, the worst-case com-

plexity for computing the support of 

a pattern with m nodes on a data-

base with k graphs, where n is the 

average number of nodes among the 

input graphs, equals O(kndm). In 

traditional applications of frequent- 

subgraph mining in the multiple input 

graphs setting, such as biology and 

chemistry, where the graphs typically 

represent molecules, n is approxi-

mately 30 to 40 nodes and thus sig-

ni"cantly smaller than in a network 

with n 0 10,000. On the other hand, 

k equals 1 in the network setting but 

is signi"cantly bigger in the molecular 

setting (k 0 1,000), leading to roughly 

the same number of total nodes. 

However, d usually reaches much 

higher values in a network than the 

molecular setting where the graphs 

are of small size and low degree. 

Therefore, although the worst-case 

complexity is the same as for gSpan, 

social network mining is harder in  

practice.

For this reason, we equip GERM 

with a user-de"ned parameter on the 

maximum number of edges in a pat-

tern. This constraint lets us deal more 

ef"ciently with the DFS strategy by 

reducing the search space.8

Experimental Results
To evaluate GERM, we experimented 

on four real-world data sets:

• Flickr (www.#ickr.com) is a pop-

ular photo-sharing portal. We 

sampled a set of Flickr users with 

edges representing mutual friend-

ship and time stamp the moment 

when the bidirectional contact is 

established. We generated one set 

of evolving graphs with monthly 

granularity and one with weekly 

granularity.

• Y360 was an online service for 

blogging, sharing pictures, movies, 

and staying in contact with friends. 

We sampled a set of users and pro-

cessed the data, as in the Flickr 

data set.

• The DBLP data set is based on a re-

cent snapshot of the DBLP, which 

has a yearly time granularity.  

We represented authors using verti-

ces with a connecting edge if they 

are coauthors. Time stamps on 

edges represent the year of the "rst 

co-authorship.

• arXiv (arxiv.org) is a coauthorship 

graph on physics publications. The 

graph we obtained (arxiv92-01) rep-

resents coauthorships that emerged 

between 1992 and 2001 with yearly  

time granularity.

We only report some of our exper-

imental results here. A more com-

prehensive set of experiments, in-

cluding experiments on runtime, 

scalability, and the in#uence of the 

parameters, is available in our pre-

vious work.8

Table 1 summarizes some basic 

statistics of the four data sets. For 

each data set, we report the num-

ber of nodes, the number of edges, 

the average degree (z), the number 

of snapshots, and the number of 

connected components (CC) as well 

as the same statistics for the largest 

connected component (LCC). The 

table shows the size of the LCC and 

the number of connected compo-

nents in all data sets. We also report 

the growth rate, which we de"ne 

as the ratio of the number of edges 

in two different snapshots: the to-

tal growth considering the last and 

the "rst snapshots and the average 

growth considering every two con-

secutive snapshots.

Next, we considered whether the 

extracted patterns carry information 

that characterizes the analyzed net-

works. We used a minimum support 

Table 1. Data set statistics.

Data set Period |V|* |E|* z* T* CC*

Largest connected component 
(LCC) Growth rates

|V| |E| z Total Average

flickr-month 03-05 147,463 241,391 3.27 24 16,357 74,792 182,417 4.88 60,347.80 2.832960

flickr-week 02-05 149,863 246,331 3.29 76 16,661 76,058 186,504 4.90 246,331.00 0.241055

y360-month 04-05 177,278 205,412 2.32 10 17,926 110,627 155,089 2.80 68,470.70 5.150420

y360-week 04-05 177,278 205,412 2.32 41 17,926 110,627 155,089 2.80 68,470.70 0.834340

arxiv92-01 92-01 70,951 289,226 8.15 10 6,563 49,008 260,938 10.65 803.41 1.691140

dblp92-02 92-02 129,073 277,081 4.29 11 13,444 83,606 220,098 5.27 25.52 0.408188

*|V | is the number of nodes, |E | is the number of edges, z is the average degree, T is the number of snapshots, and CC is the number of connected components.
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threshold of 5,000 for all but the data 

sets involving weeks, for which we 

used a minimum threshold of 3,000. 

We compared all pairs of data sets 

with respect to the con"dence of the 

rules.

Figure 4 shows the pairwise com-

parison results. From the plots, we 

can see that the comparison be-

tween a coauthor ship network (arXiv 

or DBLP) and a social network (Y360) 

as in Figures 4a, 4b, and 4c show  

Figure 4. Comparison of graph evolution rules (GERs) confidence in different networks. (a–c) The comparison between a 

coauthorship network (arXiv or DBLP) and a social network (Y360) shows different confidence values of the rules for each data 

set. Comparing the (d) two coauthorship networks (arXiv and DBLP) or (e) two social networks (Flickr and Y360) reveals that 

each rule has similar confidence values in the both data sets.
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different con"dence val-

ues of the rules for each 

data set (using Flickr in-

stead of Y360 gives the 

same results).

In contrast, the com-

parison of two coauthor-

ship networks (arXiv and 

DBLP in Figure 4d) or two 

social networks (Flickr 

and Y360 in Figure 4e)  

reveals that all rules are 

in the proximity of the bi-

sector, meaning that each 

rule has similar con"dence values in 

both data sets. We do not yet have a 

clear understanding of this striking 

behavior, but it indicates that GERs 

capture some aspects characteriz-

ing how different types of networks 

evolve.

Predicting the Future
Given a pair of nodes in an evolving 

network, link prediction is the prob-

lem of estimating the likelihood that 

an edge will eventually be formed be-

tween these two nodes. In the con-

text of a bibliographic collaboration 

network, link prediction estimates 

the likelihood that two authors will 

collaborate in the future. In the 

context of a social network such as 

Flickr or Facebook, it estimates the 

likelihood that two users will be-

come friends.

David Liben-Nowell and Jon Klein-

berg de"ned the link prediction prob-

lem as follows: given a snapshot of 

a social network at time t and a fu-

ture time t /, we can predict the new 

social ties that are likely to appear in 

the network within the time interval 

[t, t /].9 In their framework, Liben-

Nowell and Kleinberg only consid-

ered features based on the network’s 

link structure. For instance, they con-

sidered a predictor to be the num-

ber of common neighbors CN(i, j) 

of the two nodes i and j at time t. 

Another predictor that performed well 

is the Adamic-Adar measure AA(i, j), 

which is the sum of log(d(z))11 over 

all common neighbors z of i and j. 

(Liben-Nowell and Kleinberg pro-

posed other features based on the en-

semble of all paths between i and j. 

However, even considering those 

more complex features, Adamic-Adar 

is among the top-performing predic-

tors in all the networks studied.9)

We can use the rules extracted 

using the GERM algorithm to pre-

dict edges in future instances of the  

network. We start with an input net-

work N and a set of GERs R  ex-

tracted from that network. For the 

sake of simplicity, we do not use all 

rules extracted, only the rules that 

have only one edge (v1, v2) of differ-

ence between the head and the body. 

Our approach decomposes the pre-

diction problem into two steps. The 

"rst step identi"es all the embed-

dings of the body of the rule into 

the network. Each embedding of a 

rule results in exactly one candi-

date for prediction pc ! (v1, v2) be-

tween nodes v1 and v2. We consider 

those embeddings only as candidate 

predictions, and we devise a set of 

scoring functions that let us make 

a more elaborate decision about 

those candidate predictions. Each 

of these prediction candidates pc 

might result from different rules or 

different embeddings of 

the same rule. Figure 5 

shows an example where 

the rule GER1 predicts 

the same edge (dashed 

red) twice. In fact, GER1 

can be matched twice in 

the network, once to the 

upper right triangle and 

once to the lower left 

triangle, in either case  

with ) ! 5.

As a result, we know for 

each pc, the rule R gives 

rise to the prediction associated with 

the respective count count(pc, R)—

that is, the number of times a rule 

can be matched—the support of 

the rule sup(R), and its con"dence 

conf(R). Based on this informa-

tion, we de"ne four different scores 

score(pc, R) for each candidate pc and 

rule R:

• score1(pc, R) ! conf(R)

• score2(pc, R) ! sup(R) 2 conf(R)

• score3(pc, R) ! conf(R) 2 count(pc, R)

• score4(pc, R) ! sup(R) 2 conf(R) 2 

count(pc, R)

To obtain one score for each pre-

diction candidate, we need to ac-

cumulate the scores for a particular  

prediction candidate given by all the 

rules. We decided to take the two 

simplest ways of accumulation: the 

maximum and the sum. Addition-

ally, we explored a small variant that 

ensures that we only account for the 

score of the most speci"c rules. We 

call Rp
c
 the set of all rules that yield 

a candidate prediction pc, and Rp
c

∗  the 

subset of Rp
c
 such that there are no 

two rules R1, R2 in Rp
c

∗  with R R
1 2
⊑  . 

This gives us four possible ways to 

accumulate:

• pred score
1,
( ) ( ( , ))

i pc

p p Rc R i c=
∈∑ R

• pred score
2,
( ) max ( ( , ))

i pc

p p Rc R i c=
∈R

Figure 5. Edge prediction using the Graph Evolution Rule Miner 

(GERM) algorithm. GER1 is a graph evolution rule with two 

different embeddings predicting the same edge. GER2 is a rule 

predicting new nodes.
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• pred score
1,
( ) ( ( , ))

i
pc

p p Rc R i c
∗

∗=
∈∑ R

• pred score
2,
( ) max ( ( , ))

i
pc

p p Rc R i c
∗

∈
= ∗

R

Combining these with the four "rst 

scores gives us 16 different possible 

predictive features that we evaluated 

in our experiments. Since some of the 

features exhibit similar behavior, we 

only report on a subset of them in our 

plots.

Before discussing the details of 

our experiments, we need to point 

out an important difference. The 

task in the classic link-prediction 

setting is to predict edges appear-

ing in the interval [t, t /] that have 

both incident nodes already part of 

the graph at time t. In addition, our 

GERs allow for predicting edges 

from existing nodes to new nodes 

that are not yet part of the graph at 

time t.

Figure 5 depicts an example GER 

that might be used for predicting a 

new edge connected to a new node 

(GER2). The same rule might also 

match the additional node in the head 

of the rule to an already existing node 

in the network, thus helping predict 

new edges among existing nodes as 

in the standard Liben-Nowell and 

Kleinberg framework.

This is an important feature of our 

framework because many new nodes 

join the network over time. Table 2 

reports some statistics on the target 

prediction period that we adopted 

for our experiments on three differ-

ent data sets. In particular, the table 

reports the numbers of edges between 

two old nodes (that is, old-old nodes 

that existed in the training period), 

one old and one new node (old-new), 

and two new nodes (new-new). The 

old-old category includes those be-

ing handled by classical link predic-

tion (and also by our framework), the 

old-new category are those cases that 

our framework can handle but clas-

sical link prediction cannot. Neither 

our framework nor the classic link-

prediction framework can handle the 

new-new category. As Table 2 shows, 

the old-new category represents a 

large fraction of the newly created 

edges for all data sets.

Figure 6 reports precision versus 
recall curves on various scores of 
our framework for the task of pre-
dicting only old-new edges.

Next we report our experimen-

tal evaluation in the classic link- 

prediction setting (predicting only 

old-old edges). Figures 7 and 8 report 

the results for #ickr-week and #ickr-

month data sets, respectively. Both 

"gures show precision-recall plots for 

various methods. In particular, we re-

port CN and AA as baselines, one of 

our scores—namely, pred1,3, plus "ve 

combinations of our score with AA. 

The combination of our score predx,y 

with AA for an edge e is obtained by 

taking (predx,y(e) * 1) # (AA(e) * 1), 

where AA and predx,y are normalized 

before combining.

By comparing AA with our “pure” 

pred1,3 score, we can see that our 

method achieves a much higher pre-

cision for low recall levels, but it per-

forms worse than AA at higher recall 

levels. This observation suggests com-

bining AA with our methods. Figures 7 

and 8 con"rm that the combination 

achieves the best of the two methods, 

outperforming each of the methods 

combined in the majority of cases.

From this preliminary analysis, we 

can conclude that our method pred1,3 

is the most robust and stable among 

our predictors, and it should be  

Table 2. Statistics on the new edges appearing in a target period.

Data set Target period Old-old edges Old-new edges New-new edges

dblp92-02 2003 12,121 (18.0%) 29,212 (43.4%) 25,998 (38.6%)

flickr-month April 2005 34,373 (37.2%) 35,545 (38.5%) 22,512 (24.3%)

flickr-week 6th week, 2005 4,365 (41.8%) 3,885 (37.3%) 2,181 (20.9%)

Figure 6. Plot of precision versus recall on the Digital Bibliography and Library 

Project (DBLP) for the task of predicting old-new edges. Our scores are derived from 

graph evolution rules (GERs) computed with minSupp = 5,000, minConf = 0, and at 

most five edges.
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combined with AA for an effective 

link prediction.

Our framework, based on the ex-

traction of local frequent pat-

terns from the past evolution, repre-

sents a very different approach from 

the classic link-prediction method, 

which adopts features based on the 

network’s link structure at time t 

to predict if an edge will appear in 

the future interval [t, t /]. The two 

features common neighbors and 

Adamic-Adar can essentially be con-

sidered rules that predict closing tri-

angles, such as GER1 in Figure 5. 

However, even if we consider only the 

closing-triangle rule in Figure 5 (and 

not the ensemble of all the extracted 

rules as our method prescribes), we 

incorporate some additional informa-

tion about how the network evolved 

in the past in two ways. First, the 

time stamps on the edges allow for a 

matching sensitive to the current evo-

lution instead of viewing the network 

without its evolutionary growth. Fur-

ther, the con"dence describes how 

likely such an evolution was in the 

past. This information is completely 

discarded in classic link prediction, 

which only uses the network’s struc-

ture. Implicit in our work is the as-

sumption that a model’s predictive 

power can be strengthened by learn-

ing from the network’s entire evolu-

tion history and not just using infor-

mation presently available.
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