
26 1541-1672/10/$26.00 © 2010 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

S O C I A L L E A R N I N G

Learning and
Predicting the
Evolution of Social
Networks

Björn Bringmann, Katholieke Universiteit Leuven

Michele Berlingerio, ISTI-CNR

Francesco Bonchi and Aristides Gionis, Yahoo Research

Graph Evolution

Rules help in

analyzing the

evolution of large

networks and can be

used to predict the

future creation of

links among nodes.

networks follow power-law degree distri-

bution,2 have a small diameter, and ex-

hibit small-world structure3 and community

structure.4 Attempts to explain the proper-

ties of social networks have led to dynamic

models inspired by the preferential attach-

ment model,5 which assumes that new net-

work nodes have a higher probability of

forming links with high-degree nodes, cre-

ating a “rich-get-richer” effect.

Recently several researchers have turned

their attention to the evolution of social net-

works at a global scale. For example, Jure

Leskovec and his colleagues empirically ob-

served that networks become denser over

time, in the sense that the number of edges

grows superlinearly with the number of

nodes.6 Moreover, this densi"cation follows

a power-law pattern. They reported that the

network diameter often shrinks over time,

in contrast to the conventional wisdom that

such distance measures should increase

slowly as a function of the number of nodes.

Although some effort has been devoted

to analyzing global properties of social net-

work evolution, not much has been done to

study graph evolution at a microscopic level.

A "rst step in this direction investigated a

variety of network formation strategies,7

showing that edge locality plays a critical

role in network evolution.

We propose a different approach. Follow-

ing the paradigm of association rules and

frequent-pattern mining, our work searches

for typical patterns of structural changes

in dynamic networks. Mining for such lo-

cal patterns is a computationally challeng-

ing task that can provide further insight into

the increasing amount of evolving network

data. Beyond the notion of graph evolution

rules (GERs), a concept that we introduced

in an earlier work,8 we developed the Graph

W
ith the increasing availability of large social network data, there is

also an increasing interest in analyzing how those networks evolve

over time.1 Traditionally, the analysis of social networks has focused only on

a single snapshot of a network. Researchers have already veri"ed that social

JULY/AUGUST 2010 www.computer.org/intelligent 27

Evolution Rule Miner (GERM) soft-

ware to extract such rules and ap-

plied these rules to predict future net-

work evolution.9,10

The merits of our approach go be-

yond descriptive analysis. In many

cases, frequent patterns are used as

basic blocks to build more complex

data-mining solutions. Our frame-

work can help predict edges among

old and new nodes and predict when

a new edge is expected to appear.

Even when comparing directly with

the classic link-prediction problem,9

we show that simple scores based on

our evolution rules represent impor-

tant features providing good predic-

tion performances.

Rules of Graph Evolution
We use the term G ! (V, E, l) to de-

note a graph G over a set of nodes V

and edges E " V # V. The function

l: V $ E ֏ % is an assignment from

graph nodes and edges to labels from

an alphabet %. Those labels repre-

sent properties, and for simplicity,

we assume that they do not change

over time. For example, in a social

network nodes are users (with prop-

erties such as gender, country, and

college), while edge labels might rep-

resent the type of link (such as friends

or family).

We conceptually represent the

graph evolution using a series of

graphs G1, &, GT, so that Gt ! (Vt, Et)

represents the graph at time t. Be-

cause G1, &, GT represent different

snapshots of the same graph, we have

Vt " V and Et " E. For simplicity, we

assume that nodes and edges are only

added and never deleted as the graph

evolves—that is, V1 " V2 " & VT and

E1 " E2 " & ET. Our mining algo-

rithm represents the data set by sim-

ply collapsing all the snapshots G1, &,

GT in a graph G, in which edges are

time-stamped with their "rst appear-

ance. Thus, we have G ! (V, E) with

V V V
t

T

t T
= =

=
∪ 1

 and E E E
t

T

t T
= =

=
∪ 1 .

We assign a time stamp t(e) ! min{j ' e (

Ej} to each edge e ! {u, v}. Overall,

a time-evolving graph is described

as G ! (V, E, t, l), with t assigning

time stamps to the edges. (The num-

ber of edge deletions in social net-

works is small enough to be negli-

gible when analyzing the networks’

temporal evolution. However, in our

framework, we also can handle dele-

tions by slightly changing the match-

ing operator.8)

Consider a time-evolving graph G.

Intuitively, a pattern P of G is a sub-

graph of G that in addition to match-

ing edges of G also matches node and

edge labels and edge time stamps.

Now consider the pattern shown

in Figure 1 extracted from the Digi-

tal Bibliography and Library Project

(DBLP) coauthorship network (http://

dblp.uni-trier.de), where nodes repre-

sent authors and edges between nodes

represent coauthorship. Arguably, the

essence of the pattern in Figure 1 is

that two distinct pairs of connected

authors—one collaboration created

at time 0 and one at time 1—are later

(at time 2) connected by a collabora-

tion involving one author from each

pair, plus a third author. We want

to account for an occurrence of that

event even if it was taking place at

times, say, 16, 17, and 18.

These considerations lead to the fol-

lowing de"nition: Let G ! (V, E, t, l)

and P ! (VP, EP, tP, lP) be graphs,

where G is the time-evolving input

graph and P is a pattern. We assume

that P is connected. We say that P oc-

curs in G if there exists a) ∈R and

a function j : VP ֏ V mapping the

nodes of P to the nodes in G so that

the following conditions hold:

1. If (u, v) is an edge in EP, then

(j(u), (j(v)) is an edge in E and

lP(u) ! l(j(u)), lP(v) ! l(j(v)),

and lP((u, v)) ! l((j(u), j(v))). In

other words, an edge in the pat-

tern graph is an edge in the host

graph and all labels are matching.

2. If (u, v) is an edge in EP, then

t(j(u), j(v)) ! t(u, v) *). That is,

the time stamps on the edges are

matched, possibly with a) offset.

With this de"nition, we obtain equiv-

alence classes of structurally isomor-

phic patterns that differ only by a

constant on the time stamp of their

edges. To avoid redundancies in the

search space, we only pick one repre-

sentative for each equivalence class;

the one where the lowest time stamp

is zero.

Mining Graph
Evolution Rules
Following the association-rule-mining

paradigm, we next have to de"ne

concepts of support and con"dence.

Frequent-pattern mining algorithms

are based on the notion of support.

The support s(P, D) of a pattern P

in a data set D is the number of oc-

currences of P in D. In the classical

graph-mining setting where D is a

set of graphs (such as molecules), the

support is easily de"ned as the num-

ber of these graphs for which P is a

subgraph. Various algorithms dealing

with this setting exist; gSpan is one of

the most ef"cient.11 However, in our

case, the de"nition of support is more

complex because we must compute

the support in a unique time-evolving

input graph G.

The most important property of a

de"nition of support is antimonoto-

nicity, which is the basis of the Apri-

ori algorithm. This property states

Figure 1. Relative time patterns. We

extracted these patterns from the

Digital Bibliography and Library Project

(DBLP) coauthorship network.

2 2

Support = 5,034

2 01

28 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S O C I A L L E A R N I N G

that a pattern’s support should be at

least as large as the support of all its

super-patterns. The main idea is that

whenever a pattern’s support violates

the frequency constraint, all its super-

patterns can be pruned because they

will also violate the minimum frequency

constraint. Without antimonotonic-

ity, frequent-pattern mining is essen-

tially infeasible.

For our application of mining rules

of evolving networks, we employ the

minimum image-based support mea-

sure,12 which is antimonotone and

deals with the case of counting pat-

tern occurrences in a single graph, as

opposed to other measures that count

occurrences in multiple graphs.

To characterize network evolution

using frequent patterns, we need to

decompose a pattern into the par-

ticular sequence of steps and subse-

quently determine each step’s con"-

dence. Each step can be considered

as a rule body + head, with both

body and head being patterns. Given

a frequent pattern head PH, the

corresponding body PB is uniquely

de"ned as

E e E t e t e
B H e E

H

= ∈ < ∗
∈

{ max| ∗() (())}

and

V v V v E
B H B

= ∈ >{ deg(,) }| 0

where deg(v, EB) denotes the degree

of v with respect to the edges in EB.

Moreover, we constrain PB to be con-

nected. The support of a GER is the

support of its head. Finally, following

the association rules framework, we

de"ne a rule’s con"dence as the ratio

of the support of the rule’s head and

body. (This de"nition yields a unique

body for each head and therefore

a unique con"dence value for each

head. This lets us represent the rules

by the head only, as in Figure 1. This

definition disallows disconnected

graphs as body due to the lack of a

support de"nition for disconnected

graphs. As a consequence, not all fre-

quent patterns can be decomposed

into GERs.)

Figure 2 shows an example of a

real GER extracted from the DBLP.

The node labels represent the class of

the node’s degree—that is, a node la-

beled with a large number is a node

with high degree. In this example, la-

bel 3 indicates nodes with a degree

larger than 50. Additionally, edge

labels capture the time information

and represent the (relative) year in

which the "rst collaboration between

two authors was established. Intui-

tively, the rule in Figure 2 might be

read as a local evidence of preferential

attach ment: a large-degree node (la-

bel 3), which at time t is connected to

four medium-degree nodes (label 2),

at time t * 1 will be connected to a

"fth node. The collaboration-rich

researcher gets richer.

We developed a tool for mining

rules of graph evolution using the al-

gorithms we’ve just described. Our

GERM tool is an adaptation of an

earlier algorithm,12 which is in turn

an adaptation of gSpan.11 (GERM’s

executable code is freely available at

http://www-kdd.isti.cnr.it/GERM.)

Thus, GERM, like gSpan, is based on

a depth-"rst search (DFS) traversal of

the search space, which leads to low

memory requirements. Indeed, in all

our experiments, the memory con-

sumption was negligible.

Figure 3 shows the basic structure

of the GERM graph miner. The most

involved part of the algorithm is the

support computation. The starting

point of our implementation is the

frequent-subgraph mining frame-

work,12 in which the gSpan support

calculation is replaced by the mini-

mum image based support.

One of gSpan’s key elements is the

use of the minimum DFS code, which

is a canonical form introduced to

avoid multiple generations of the same

pattern. We must change this canoni-

cal form to enable GERM to mine

patterns with relative time. As we ex-

plained previously, we only want one

representative pattern per equivalence

class—the one with the lowest time

stamp being zero. We therefore mod-

ify the canonical form such that the

"rst edge in the canonical form is al-

ways the one with the lowest time

stamp.

Figure 2. A graph evolution rule (GER)

extracted from the Digital Bibliography

and Library Project (DBLP) coauthorship

network.

3

2

Confidence = 0.305

Support = 1,190

00

0 0

1

22

2

2

Figure 3. The basic structure of the Graph Evolution Rule Miner (GERM). G is the

input graph, S is the set of frequent subgraphs mined by the algorithm, and

s is the current subgraph, which is added to the solution set S if its frequency

s(s, G) exceeds the minimum support threshold. The algorithm’s initial call is

SubgraphMining(G, ,, e).

1: if s - min(s) then return // using our canonical form
2: S . S $ s
3: enumerate all s potential children with one edge growth as s/
4: for all enumerated s/ do

5: // considering) offset and our support definition
6: if s(s/, G) minSupp then

7: SubgraphMining(G, S, s/)

JULY/AUGUST 2010 www.computer.org/intelligent 29

When matching a pattern to the

host graph, we implicitly "x a value

of), which represents the time gap

between the pattern and host graph.

To complete the match, all remaining

edges must adhere to this value of).

If all the edges match with the) set

when matching the "rst edge, the pat-

tern matches the host graph with that

value of).

GERM’s computational complex-

ity is similar to that of gSpan in the

multiple input graphs setting, since

one of the factors is the total number

of nodes in both cases. However, the

maximum node degree d is a second

factor because it increases the possi-

ble combinations that have to be eval-

uated for each subgraph-isomorphism

test. In detail, the worst-case com-

plexity for computing the support of

a pattern with m nodes on a data-

base with k graphs, where n is the

average number of nodes among the

input graphs, equals O(kndm). In

traditional applications of frequent-

subgraph mining in the multiple input

graphs setting, such as biology and

chemistry, where the graphs typically

represent molecules, n is approxi-

mately 30 to 40 nodes and thus sig-

ni"cantly smaller than in a network

with n 0 10,000. On the other hand,

k equals 1 in the network setting but

is signi"cantly bigger in the molecular

setting (k 0 1,000), leading to roughly

the same number of total nodes.

However, d usually reaches much

higher values in a network than the

molecular setting where the graphs

are of small size and low degree.

Therefore, although the worst-case

complexity is the same as for gSpan,

social network mining is harder in

practice.

For this reason, we equip GERM

with a user-de"ned parameter on the

maximum number of edges in a pat-

tern. This constraint lets us deal more

ef"ciently with the DFS strategy by

reducing the search space.8

Experimental Results
To evaluate GERM, we experimented

on four real-world data sets:

• Flickr (www.#ickr.com) is a pop-

ular photo-sharing portal. We

sampled a set of Flickr users with

edges representing mutual friend-

ship and time stamp the moment

when the bidirectional contact is

established. We generated one set

of evolving graphs with monthly

granularity and one with weekly

granularity.

• Y360 was an online service for

blogging, sharing pictures, movies,

and staying in contact with friends.

We sampled a set of users and pro-

cessed the data, as in the Flickr

data set.

• The DBLP data set is based on a re-

cent snapshot of the DBLP, which

has a yearly time granularity.

We represented authors using verti-

ces with a connecting edge if they

are coauthors. Time stamps on

edges represent the year of the "rst

co-authorship.

• arXiv (arxiv.org) is a coauthorship

graph on physics publications. The

graph we obtained (arxiv92-01) rep-

resents coauthorships that emerged

between 1992 and 2001 with yearly

time granularity.

We only report some of our exper-

imental results here. A more com-

prehensive set of experiments, in-

cluding experiments on runtime,

scalability, and the in#uence of the

parameters, is available in our pre-

vious work.8

Table 1 summarizes some basic

statistics of the four data sets. For

each data set, we report the num-

ber of nodes, the number of edges,

the average degree (z), the number

of snapshots, and the number of

connected components (CC) as well

as the same statistics for the largest

connected component (LCC). The

table shows the size of the LCC and

the number of connected compo-

nents in all data sets. We also report

the growth rate, which we de"ne

as the ratio of the number of edges

in two different snapshots: the to-

tal growth considering the last and

the "rst snapshots and the average

growth considering every two con-

secutive snapshots.

Next, we considered whether the

extracted patterns carry information

that characterizes the analyzed net-

works. We used a minimum support

Table 1. Data set statistics.

Data set Period |V|* |E|* z* T* CC*

Largest connected component
(LCC) Growth rates

|V| |E| z Total Average

flickr-month 03-05 147,463 241,391 3.27 24 16,357 74,792 182,417 4.88 60,347.80 2.832960

flickr-week 02-05 149,863 246,331 3.29 76 16,661 76,058 186,504 4.90 246,331.00 0.241055

y360-month 04-05 177,278 205,412 2.32 10 17,926 110,627 155,089 2.80 68,470.70 5.150420

y360-week 04-05 177,278 205,412 2.32 41 17,926 110,627 155,089 2.80 68,470.70 0.834340

arxiv92-01 92-01 70,951 289,226 8.15 10 6,563 49,008 260,938 10.65 803.41 1.691140

dblp92-02 92-02 129,073 277,081 4.29 11 13,444 83,606 220,098 5.27 25.52 0.408188

*|V | is the number of nodes, |E | is the number of edges, z is the average degree, T is the number of snapshots, and CC is the number of connected components.

30 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S O C I A L L E A R N I N G

threshold of 5,000 for all but the data

sets involving weeks, for which we

used a minimum threshold of 3,000.

We compared all pairs of data sets

with respect to the con"dence of the

rules.

Figure 4 shows the pairwise com-

parison results. From the plots, we

can see that the comparison be-

tween a coauthor ship network (arXiv

or DBLP) and a social network (Y360)

as in Figures 4a, 4b, and 4c show

Figure 4. Comparison of graph evolution rules (GERs) confidence in different networks. (a–c) The comparison between a

coauthorship network (arXiv or DBLP) and a social network (Y360) shows different confidence values of the rules for each data

set. Comparing the (d) two coauthorship networks (arXiv and DBLP) or (e) two social networks (Flickr and Y360) reveals that

each rule has similar confidence values in the both data sets.

0.0

0.0 0.2 0.4 0.6

arXiv(a) (b)

0.8 1.0

0.2

Y
3

6
0

 –
 W

e
e
k
s

0.4

0.6

0.8

1.0

0.0

0.0 0.2 0.4 0.6

DBLP

0.8 1.0

0.2

Y
3

6
0

 –
 w

e
e
k
s

0.4

0.6

0.8

1.0

0.0

0.0 0.2 0.4 0.6

DBLP

0.8 1.0

0.2

Y
3

6
0

 –
 m

o
n

th
s

0.4

0.6

0.8

1.0

0.0

0.0 0.2 0.4 0.6

arXiv(c) (d)

0.8 1.0

0.2

D
B

L
P

0.4

0.6

0.8

1.0

0.0

0.0 0.2 0.4 0.6

Y360 – weeks(e)

0.8 1.0

0.2

F
li
c
k
r

–
 w

e
e
k
s

0.4

0.6

0.8

1.0

JULY/AUGUST 2010 www.computer.org/intelligent 31

different con"dence val-

ues of the rules for each

data set (using Flickr in-

stead of Y360 gives the

same results).

In contrast, the com-

parison of two coauthor-

ship networks (arXiv and

DBLP in Figure 4d) or two

social networks (Flickr

and Y360 in Figure 4e)

reveals that all rules are

in the proximity of the bi-

sector, meaning that each

rule has similar con"dence values in

both data sets. We do not yet have a

clear understanding of this striking

behavior, but it indicates that GERs

capture some aspects characteriz-

ing how different types of networks

evolve.

Predicting the Future
Given a pair of nodes in an evolving

network, link prediction is the prob-

lem of estimating the likelihood that

an edge will eventually be formed be-

tween these two nodes. In the con-

text of a bibliographic collaboration

network, link prediction estimates

the likelihood that two authors will

collaborate in the future. In the

context of a social network such as

Flickr or Facebook, it estimates the

likelihood that two users will be-

come friends.

David Liben-Nowell and Jon Klein-

berg de"ned the link prediction prob-

lem as follows: given a snapshot of

a social network at time t and a fu-

ture time t /, we can predict the new

social ties that are likely to appear in

the network within the time interval

[t, t /].9 In their framework, Liben-

Nowell and Kleinberg only consid-

ered features based on the network’s

link structure. For instance, they con-

sidered a predictor to be the num-

ber of common neighbors CN(i, j)

of the two nodes i and j at time t.

Another predictor that performed well

is the Adamic-Adar measure AA(i, j),

which is the sum of log(d(z))11 over

all common neighbors z of i and j.

(Liben-Nowell and Kleinberg pro-

posed other features based on the en-

semble of all paths between i and j.

However, even considering those

more complex features, Adamic-Adar

is among the top-performing predic-

tors in all the networks studied.9)

We can use the rules extracted

using the GERM algorithm to pre-

dict edges in future instances of the

network. We start with an input net-

work N and a set of GERs R ex-

tracted from that network. For the

sake of simplicity, we do not use all

rules extracted, only the rules that

have only one edge (v1, v2) of differ-

ence between the head and the body.

Our approach decomposes the pre-

diction problem into two steps. The

"rst step identi"es all the embed-

dings of the body of the rule into

the network. Each embedding of a

rule results in exactly one candi-

date for prediction pc ! (v1, v2) be-

tween nodes v1 and v2. We consider

those embeddings only as candidate

predictions, and we devise a set of

scoring functions that let us make

a more elaborate decision about

those candidate predictions. Each

of these prediction candidates pc

might result from different rules or

different embeddings of

the same rule. Figure 5

shows an example where

the rule GER1 predicts

the same edge (dashed

red) twice. In fact, GER1

can be matched twice in

the network, once to the

upper right triangle and

once to the lower left

triangle, in either case

with) ! 5.

As a result, we know for

each pc, the rule R gives

rise to the prediction associated with

the respective count count(pc, R)—

that is, the number of times a rule

can be matched—the support of

the rule sup(R), and its con"dence

conf(R). Based on this informa-

tion, we de"ne four different scores

score(pc, R) for each candidate pc and

rule R:

• score1(pc, R) ! conf(R)

• score2(pc, R) ! sup(R) 2 conf(R)

• score3(pc, R) ! conf(R) 2 count(pc, R)

• score4(pc, R) ! sup(R) 2 conf(R) 2

count(pc, R)

To obtain one score for each pre-

diction candidate, we need to ac-

cumulate the scores for a particular

prediction candidate given by all the

rules. We decided to take the two

simplest ways of accumulation: the

maximum and the sum. Addition-

ally, we explored a small variant that

ensures that we only account for the

score of the most speci"c rules. We

call Rp
c
 the set of all rules that yield

a candidate prediction pc, and Rp
c

∗ the

subset of Rp
c
 such that there are no

two rules R1, R2 in Rp
c

∗ with R R
1 2
⊑ .

This gives us four possible ways to

accumulate:

• pred score
1,
() ((,))

i pc

p p Rc R i c=
∈∑ R

• pred score
2,
() max ((,))

i pc

p p Rc R i c=
∈R

Figure 5. Edge prediction using the Graph Evolution Rule Miner

(GERM) algorithm. GER1 is a graph evolution rule with two

different embeddings predicting the same edge. GER2 is a rule

predicting new nodes.

Graph evolution rules

Body Head

Body

GER2

GER1

0
0

1
0

0

65

6

5

2

7

1 7

6

7
6

0

1
0

Head

Network

32 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S O C I A L L E A R N I N G

• pred score
1,
() ((,))

i
pc

p p Rc R i c
∗

∗=
∈∑ R

• pred score
2,
() max ((,))

i
pc

p p Rc R i c
∗

∈
= ∗

R

Combining these with the four "rst

scores gives us 16 different possible

predictive features that we evaluated

in our experiments. Since some of the

features exhibit similar behavior, we

only report on a subset of them in our

plots.

Before discussing the details of

our experiments, we need to point

out an important difference. The

task in the classic link-prediction

setting is to predict edges appear-

ing in the interval [t, t /] that have

both incident nodes already part of

the graph at time t. In addition, our

GERs allow for predicting edges

from existing nodes to new nodes

that are not yet part of the graph at

time t.

Figure 5 depicts an example GER

that might be used for predicting a

new edge connected to a new node

(GER2). The same rule might also

match the additional node in the head

of the rule to an already existing node

in the network, thus helping predict

new edges among existing nodes as

in the standard Liben-Nowell and

Kleinberg framework.

This is an important feature of our

framework because many new nodes

join the network over time. Table 2

reports some statistics on the target

prediction period that we adopted

for our experiments on three differ-

ent data sets. In particular, the table

reports the numbers of edges between

two old nodes (that is, old-old nodes

that existed in the training period),

one old and one new node (old-new),

and two new nodes (new-new). The

old-old category includes those be-

ing handled by classical link predic-

tion (and also by our framework), the

old-new category are those cases that

our framework can handle but clas-

sical link prediction cannot. Neither

our framework nor the classic link-

prediction framework can handle the

new-new category. As Table 2 shows,

the old-new category represents a

large fraction of the newly created

edges for all data sets.

Figure 6 reports precision versus
recall curves on various scores of
our framework for the task of pre-
dicting only old-new edges.

Next we report our experimen-

tal evaluation in the classic link-

prediction setting (predicting only

old-old edges). Figures 7 and 8 report

the results for #ickr-week and #ickr-

month data sets, respectively. Both

"gures show precision-recall plots for

various methods. In particular, we re-

port CN and AA as baselines, one of

our scores—namely, pred1,3, plus "ve

combinations of our score with AA.

The combination of our score predx,y

with AA for an edge e is obtained by

taking (predx,y(e) * 1) # (AA(e) * 1),

where AA and predx,y are normalized

before combining.

By comparing AA with our “pure”

pred1,3 score, we can see that our

method achieves a much higher pre-

cision for low recall levels, but it per-

forms worse than AA at higher recall

levels. This observation suggests com-

bining AA with our methods. Figures 7

and 8 con"rm that the combination

achieves the best of the two methods,

outperforming each of the methods

combined in the majority of cases.

From this preliminary analysis, we

can conclude that our method pred1,3

is the most robust and stable among

our predictors, and it should be

Table 2. Statistics on the new edges appearing in a target period.

Data set Target period Old-old edges Old-new edges New-new edges

dblp92-02 2003 12,121 (18.0%) 29,212 (43.4%) 25,998 (38.6%)

flickr-month April 2005 34,373 (37.2%) 35,545 (38.5%) 22,512 (24.3%)

flickr-week 6th week, 2005 4,365 (41.8%) 3,885 (37.3%) 2,181 (20.9%)

Figure 6. Plot of precision versus recall on the Digital Bibliography and Library

Project (DBLP) for the task of predicting old-new edges. Our scores are derived from

graph evolution rules (GERs) computed with minSupp = 5,000, minConf = 0, and at

most five edges.

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

P
re
ci
si
o
n

Recall

pred1,1

pred1,3

pred2,3

pred*1,1

pred*1,3

pred*2,3

JULY/AUGUST 2010 www.computer.org/intelligent 33

combined with AA for an effective

link prediction.

Our framework, based on the ex-

traction of local frequent pat-

terns from the past evolution, repre-

sents a very different approach from

the classic link-prediction method,

which adopts features based on the

network’s link structure at time t

to predict if an edge will appear in

the future interval [t, t /]. The two

features common neighbors and

Adamic-Adar can essentially be con-

sidered rules that predict closing tri-

angles, such as GER1 in Figure 5.

However, even if we consider only the

closing-triangle rule in Figure 5 (and

not the ensemble of all the extracted

rules as our method prescribes), we

incorporate some additional informa-

tion about how the network evolved

in the past in two ways. First, the

time stamps on the edges allow for a

matching sensitive to the current evo-

lution instead of viewing the network

without its evolutionary growth. Fur-

ther, the con"dence describes how

likely such an evolution was in the

past. This information is completely

discarded in classic link prediction,

which only uses the network’s struc-

ture. Implicit in our work is the as-

sumption that a model’s predictive

power can be strengthened by learn-

ing from the network’s entire evolu-

tion history and not just using infor-

mation presently available.

Acknowledgments
Björn Bringmann’s research is supported

by the European Commission under the

Seventh Framework Program FP7-ICT-

2007-C FET-Open, under contract number

BISON-211898.

References
1. F.-Y. Wang et al., “Social Computing:

From Social Informatics to Social

Intelligence,” IEEE Intelligent Systems,

vol. 22, no. 2, 2007, pp. 79–83.

2. M. Faloutsos, P. Faloutsos, and

C. Faloutsos, “On Power-Law

Relationships of the Internet Topol-

ogy,” ACM SIGCOMM Computer

Comm. Rev., vol. 29, no. 4, 1999,

pp. 251–262.

3. D.J. Watts and S.H. Strogatz, “Col-

lective Dynamics of ‘Small World’

Networks,” Nature, vol. 393, 1998,

pp. 440–442.

Figure 7. Plot of precision versus recall on flickr-week showing a selection of our

scores combined with Adamic-Adar compared with the baselines. Our scores

are derived from graph evolution rules (GERs) computed with minSupp = 3,000,

minConf = 0, and at most six edges.

0.001

0.010

0.100

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P
re

ci
si

o
n

Recall

AA

CN

AA * pred1,1

AA * pred2,1

AA * pred1,3

AA * pred2,3

pred1,3

Figure 8. Plot of precision versus recall on flickr-month showing a selection of our

scores combined with Adamic-Adar compared with the baselines. Our scores are

derived from graph evolution rules (GERs) computed with minSupp = 5,000,

minConf = 0, and at most five edges.

0.001

0.010

0.100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

Recall

AA

CN

AA * pred1,1

AA * pred2,1

AA * pred1,3

pred1,3

34 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S O C I A L L E A R N I N G

4. M. Girvan and M.E.J. Newman,

“Community Structure in Social

and Biological Network,” Proc.

Nat’l Academy of the Sciences

(PNAS), vol. 99, no. 12, 2002,

pp. 7821–7826.

5. R. Albert and A.L. Barabasi,

“Emergence of Scaling in Random

Networks,” Science, vol. 286, 1999,

pp. 509–512.

6. J. Leskovec, J.M. Kleinberg, and

C. Faloutsos, “Graphs Over Time:

Densi"cation Laws, Shrinking Diam-

eters and Possible Explanations,”

Proc. 11th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data

Mining (KDD), ACM Press, 2005,

pp. 177–187.

7. J. Leskovec et al., “Microscopic

Evolution of Social Networks,” Proc.

14th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data

Mining (KDD), ACM Press, 2008,

pp. 462–470.

8. M. Berlingerio et al., “Mining Graph

Evolution Rules,” Proc. European

Conf. Machine Learning and Knowl-

edge Discovery in Databases (ECML

PKDD), LNCS 5781, Springer, 2009,

pp. 115–130.

9. D. Liben-Nowell and J.M. Kleinberg,

“The Link Prediction Problem for

Social Networks,” Proc. ACM Int’l Conf.

Information and Knowledge Manage-

ment (CIKM 03), ACM Press, 2003,

pp. 556–559.

10. L. Tang and H. Liu. “Toward Predict-

ing Collective Behavior via Social

Dimension Extraction,” IEEE Intel-

ligent Systems, vol. 25, no. 4, 2010,

pp. 19–25.

11. X. Yan and J. Han, “g-Span: Graph-

Based Substructure Pattern Min-

ing,” Proc. Int’l Conf. Data Mining

(ICDM), IEEE CS Press, 2002,

pp. 721–724.

12. B. Bringmann and S. Nijssen, “What

Is Frequent in a Single Graph?” Proc.

12th Paci"c-Asia Conf. Advances in

Knowledge Discovery and Data Min-

ing, (PAKDD 2008), ACM Press, 2008,

pp. 858–863.

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

 T H E A U T H O R S

Björn Bringmann is a postdoctoral researcher at the Katholieke Universiteit Leuven. His
research interests include data mining from molecular data to complex social and biologi-
cal networks. Bringmann has a PhD in computer science from the Katholieke Universiteit
Leuven. Contact him at bjorn.bringmann@cs.kuleuven.be.

Michele Berlingerio is a postdoctoral researcher at the KDDLab of Institute of Infor-
mation Science and Technologies, Italian National Research Council (ISTI-CNR). His
research interests include graph mining, social network analysis, and work#ow mining.
Berlingerio has a PhD in computer science and engineering from IMT Lucca. Contact
him at michele.berlingerio@isti.cnr.it.

Francesco Bonchi is a senior research scientist at Yahoo Research, Barcelona, Spain. His
research interests include mining query-logs, social networks, and social media. Bonchi
has a PhD in computer science from the University of Pisa. Contact him at bonchi@
yahoo-inc.com.

Aristides Gionis is a senior research scientist in Yahoo Research, Barcelona, Spain.
His research interests include algorithms for data analysis and applications in the Web
domain. Gionis has a PhD in computer science from Stanford University. Contact him at
gionis@yahoo-inc.com.

