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Элементы теории функции комплексного переменного

Элементарные функции комплексного переменного.  Нахождение значений функций комплексной переменной в заданных точках.

Функция комплексного переменного 

[image: image698.png]Puc. 1



 определена на множестве комплексных чисел  и имеет своими значениями в каждой точке 
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Основные функции комплексной переменной
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Показательная функция 
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Функции 
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Функции 
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Для тригонометрических функций комплексного переменного остаются в силе все известные формулы тригонометрии.

4. 
[image: image27.wmf]y

ichx

y

shx

e

e

shz

z

z

sin

cos

2

+

=

-

=

-


5. 
[image: image28.wmf]yshx

i

ychx

e

e

chz

z

z

sin

cos

2

+

=

+

=

-


Функции 
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Значение функции, которое получается при 
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Логарифмическая функция обладает следующими свойствами:

1. 
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Пример. Найдите значение функции 
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Решение. Подставим 
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Ответ: 
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Пример. Найдите значение функции 
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Решение. Выделим действительную и мнимую части функции, пользуясь формулой 
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Подставим 
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Ответ: 
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Пример. Найдите значение функции 
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Решение. Выделим действительную и мнимую части функции, пользуясь формулой 
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Подставим 
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Ответ: 
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Восстановление регулярной функции по ее действительной или мнимой части с помощью условий Коши-Римана. Интегрирование по комплексному аргументу.

Рассмотрим функцию комплексной переменной 
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. Для того, чтобы данная функция была дифференцируема необходимо и достаточно:

1) Чтобы существовали частные производные первого порядка
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2) Чтобы выполнялись условия Коши-Римана:
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Пример. Определить действительную 
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 части функции 
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. Проверить выполнение условий Коши-Римана. В случае выполнения условий Коши-Римана, найти производную функции.

Решение. 

1) Найдём действительную и мнимую часть функции. 

Так как 
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Таким образом:
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2) Проверим выполнение условий Коши Римана. 
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Таким образом, условие 
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Таким образом, условие 
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Условия Коши-Римана выполнены, следовательно, функция дифференцируема.

3) Найдём производную функции. 
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Мнимая единица 
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Ответ: 
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Пример. Восстановите регулярную функцию 
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Решение: 

1) Действительная 
[image: image97.wmf](

)

y

x

u

;

и мнимая 
[image: image98.wmf](

)

y

x

v

;

части регулярной функции 
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2) Найдем функцию 
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 который не зависит от пути интегрирования. Согласно условию, значение мнимой части в точке 
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В качестве пути интегрирования выберем ломаную 
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Разобьем ломаную 
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На 
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Таким образом, согласно свойству аддитивности криволинейного интеграла, мнимая часть искомой функции равна:
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3) Зная действительную и мнимую части, можем записать регулярную функцию 
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Ответ: 
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Пример 6. Представить функцию 
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Таким образом
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2) Определим, является ли функция аналитической и в наших точках. Для этого проверим условия Коши – Римана (1).
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Для всех 
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Следовательно функция аналитическая в каждой точке комплексной плоскости т.е. аналитическая во всей комплексной плоскости.

Пример. Вычислите интеграл 
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Решение. Подынтегральное выражение имеет вид
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Искомый интеграл выразится через два криволинейных интеграла второго рода.
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Путь интегрирования представляет собой отрезок 
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Уравнения данного отрезка: 
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Выразим криволинейные интегралы, через определенные:
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Ответ: 
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Пример. Вычислите интеграл 
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Решение. Подынтегральное выражение, записанное в показательной форме, имеет вид 
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Согласно условию 
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Искомый интеграл равен 
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Ряды Тейлора и Лорана. Изолированные особые точки функции, их классификация. Вычеты. Основная теорема о вычетах. Применение вычетов к вычислению интегралов.
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Теорема. Пусть 
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Стандартные разложения функций комплексной переменной в степенные ряды
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Пример 9. Найти вычеты функции 
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Теорема. Если функция 
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Пример 10. Вычислить интеграл по замкнутому контуру 
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Решение.
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Пример. Разложите функцию 
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Решение. Применим разложения для 
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Выпишем член первого ряда при 
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Запишем сумму двух рядов в виде единого ряда, сгруппировав слагаемые при одинаковых степенях 
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Регулярная часть ряда Лорана равна 
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Пример. Разложите функцию 
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Решение. Представим функцию в виде суммы простейших рациональных дробей:
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Первое слагаемое представляет собой сумму ряда геометрической прогрессии с первым членом, равным 
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Последний переход от ряда 
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Первое слагаемое представляет собой сумму ряда геометрической прогрессии с первым членом, равным 
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Регулярная часть равна 
[image: image357.wmf]å

¥

=

-

0

4

n

n

n

z

; главная часть равна 
[image: image358.wmf]å

¥

=

+

-

0

1

1

n

n

z

.

в) Если 
[image: image359.wmf]¥

<

<

1

z

 (рис.4, обл.III), то 
[image: image360.wmf]1

<

4

1,

<

1

z

z

. Представим функцию 
[image: image361.wmf](

)

*

 в виде: 
[image: image362.wmf](

)

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

=

z

z

z

z

z

f

1

1

1

4

1

1

.

Первое слагаемое представляет собой сумму ряда геометрической прогрессии с первым членом, равным 
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Полученный ряд содержит только главную часть равную 
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Ответ: а) 
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Пример. По теореме Коши о вычетах вычислите интеграл 
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 - окружность 
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, обход которой происходит в положительном направлении. 
Решение. Контур интегрирования 
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=

z

 представляет собой окружность единичного радиуса с центром в начале координат. Подынтегральная функция 
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, принадлежащую области, ограниченной контуром 
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Для нахождения вычета в этой точке разложим функцию в ряд Лорана по степеням 
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 с помощью стандартного разложения:
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Получили разность двух рядов. Поскольку вычет – это коэффициент при степени ряда 
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 ряда Лорана, найдем номер члена каждого ряда, содержащего
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а) Рассмотрим первый ряд 
[image: image384.wmf](

)

(

)

å

¥

=

-

-

0

2

3

!

2

1

12

n

n

n

n

z

.

Приравняв показатель степени 
[image: image385.wmf]-1

2n

-

3

=

, получим 
[image: image386.wmf]2

n

=

, а следовательно: 
[image: image387.wmf](

)

5

,

0

2

1

!

4

1

12

a

2

1

-

=

=

-

=

.
б) Рассмотрим второй ряд 
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Приравняв показатель степени 
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Вычет функции в точке 
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По теореме Коши о вычетах получим:
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Ответ: 
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Пример. По теореме Коши о вычетах вычислите интеграл 
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Решение. Контур интегрирования 
[image: image399.wmf]1

2

=

-

i

z

 представляет собой окружность единичного радиуса с центром в точке 
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Подынтегральная функция 
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Первая точка
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, области не принадлежит. Значит, искомый интеграл будет равен 
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Найдем вычет в точке 
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Так как 
[image: image411.wmf]3

=

k

, поэтому

[image: image412.wmf](

)

(

)

(

)

(

)

(

)

=

²

-

=

²

÷

ø

ö

ç

è

æ

-

=

²

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

-

=

-

®

®

®

1

2

2

3

3

2

2

lim

!

2

1

1

2

lim

!

2

1

2

2

1

2

lim

!

1

3

1

2

z

z

z

i

z

i

z

z

z

i

resf

i

z

i

z

i

z



[image: image413.wmf](

)

(

)

(

)

8

2

2

lim

!

2

1

lim

!

2

1

3

3

2

2

2

i

i

z

z

i

z

i

z

-

=

-

=

-

=

¢

=

-

®

-

®

.

Окончательно получим 
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Ответ:  
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Пример. По теореме Коши о вычетах вычислите интеграл 
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Решение. Контур интегрирования 
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Подынтегральная функция 
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 имеет три изолированные особые точки 
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Первая и вторая точки принадлежат области, ограниченной контуром 
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 области не принадлежит. Значит, искомый интеграл будет равен 
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Определим тип каждой особой точки и найдем вычеты в них.
Рассмотрим точку 
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Таким образом, точка 
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 является устранимой особой точкой, поэтому 
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Рассмотрим точку 
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. Точка является простым полюсом (корень знаменателя, кратности 1). Найдем вычет в этой точке:
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Таким образом, искомый интеграл равен:
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Ответ: 
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Преобразование Лапласа. Основные теоремы об оригиналах и изображениях. Решение дифференциальных уравнений и систем операционным методом.

Основная задача. Пусть имеем семейство функций 
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Сформулируем свойства преобразования Лапласа.
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Запишем формулы преобразования Лапласа.
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Сформулируем теорему разложения, которая позволяет вернуться в пространство оригиналов из пространства изображений.
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[image: image556.wmf])

1

)(

2

(

5

2

)

(

+

+

+

=

p

p

p

p

F

 
[image: image557.wmf]2

1

-

=

p

 и 
[image: image558.wmf]1

2

-

=

p

 – простые полюса.


[image: image559.wmf]{

}

{

}

+

ú

û

ù

ê

ë

é

+

+

+

+

=

+

=

-

®

-

=

-

=

)

1

)(

2

(

)

5

2

(

)

2

(

lim

)

(

)

(

)

(

2

1

2

p

p

e

p

p

e

p

F

res

e

p

F

res

t

f

pt

p

pt

p

pt

p



[image: image560.wmf].

3

2

)

5

2

(

lim

1

)

5

2

(

lim

)

1

)(

2

(

)

5

2

(

)

1

(

lim

2

1

2

1

t

t

pt

p

pt

p

pt

p

e

e

p

e

p

p

e

p

p

p

e

p

p

-

-

®

-

®

-

®

+

-

=

ú

û

ù

ê

ë

é

+

+

+

ú

û

ù

ê

ë

é

+

+

=

ú

û

ù

ê

ë

é

+

+

+

+

+
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Пример. Найти преобразование Фурье для функции 
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ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ .
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2. Восстановите регулярную функцию 
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3. Найдите интеграл 
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4. Разложите функцию 
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5. Вычислите интеграл 
[image: image662.wmf](

)

ò

=

C

dz

z

f

W
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6. Найти решение дифференциального уравнения, удовлетворяющего начальным условиям с помощью преобразования Лапласа (операционным методом).
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7. Найти преобразование Фурье непосредственно и по связи с преобразованием Лапласа, если
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